3 O Método híbrido dos elementos finitos dinâmicos

Neste capítulo é mostrada a formulação do método híbrido dos elementos finitos dinâmicos. São desenvolvidas as equações matriciais de equilíbrio, considerando dois casos: o desenvolvimento que leva ao método de superposição modal avançada (análise feito no domínio do tempo a partir de uma formulação no domínio da freqüência) e a técnica da transformada de Laplace (inversão da resposta para o tempo de uma análise feita somente no domínio da freqüência).

As formulações dessas duas técnicas serão feitas em paralelo, ressaltando as diferenças entre elas.

3.1 Conceitos básicos da elasticidade linear

Seja um corpo elástico sujeito a pequenos deslocamentos. Os deslocamentos de um elemento infinitesimal desse corpo são descritos pela teoria da elasticidade, segundo dois sistemas de coordenadas:

- Um sistema global ou externo, onde se têm deslocamentos absolutos u_i , deslocamentos sobre os quais realizam trabalho duas forças externas, que são as chamadas forças de massa b_i que atuam no domínio Ω (interior do corpo) e as forças de superfície t_i que atuam no contorno Γ (superfície do corpo).
- Um sistema local ou interno, onde se têm deslocamentos relativos ε_{ij} (deformações) e σ_{ij} (tensões) produzidos pelas forças de superfície, tudo isso num elemento infinitesimal $d\Omega$.

O contorno do corpo é dividido em duas partes $\Gamma = \Gamma_{\sigma} + \Gamma_{u}$: em Γ_{σ} têm-se forças conhecidas e em Γ_{u} deslocamentos conhecidos \overline{u}_{i} .

A formulação de um problema de elasticidade linear pode ser resumido como segue: seja um conjunto de forças externas conhecidas, agindo sobre o corpo elástico, as quais são descritas no sistema global pelas forças b_i agindo em Ω e forças t_i agindo em Γ_{σ} . Uma análise desse corpo consiste em determinar os deslocamentos u_i que ocorrem em Ω e em Γ_{σ} , as reações de apoio que surgem em Γ_u e as tensões σ_{ij} em Ω .

Para determinar os valores desconhecidos causados pelas solicitações externas é necessário estabelecer relações de transformação entre forças e deslocamentos no sistema global e local. Essas relações de transformação são dadas pelas: equações de equilíbrio de forças; equações de compatibilidade entre deformações e deslocamentos; e as equações constitutivas.

As equações de equilíbrio de forças que relacionam as forças descritas no sistema global e as tensões do sistema local são dadas por

$$\sigma_{ij,j} + b_i - \rho \ddot{u}_i - \mu \dot{u}_i = 0 \quad \text{em} \quad \Omega$$
 (3-1)

$$\sigma_{ij} = \sigma_{ji} \quad \text{em} \quad \Omega$$
 (3-2)

$$\sigma_{ij}\eta_j = \overline{t}_i \quad \text{em} \quad \Gamma_{\sigma}$$
 (3-3)

onde ρ é a densidade de massa, $\mu = 2\zeta\rho$ (ζ é um fator de amortecimento), η_j são os co-senos diretores de um elemento de superfície $d\Gamma$ e \ddot{u} é a segunda derivada do deslocamento com respeito ao tempo.

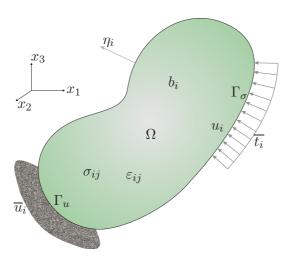


Figura 3.1: Corpo elástico em equilíbrio.

As equações de compatibilidade entre as deformações do sistema local e deslocamentos descritos no sistema global, chamadas relações de transformação cinemática, são dadas por

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \quad \text{em} \quad \Omega$$
 (3-4)

$$u_i = \overline{u}_i \quad \text{em} \quad \Gamma_u$$
 (3-5)

Finalmente, as equações constitutivas representam as relações que existentes entre as tensões e deformações no corpo elástico (veja a figura 3.1), dadas pela equação

$$\sigma_{ij} = C_{ijkl} \, \varepsilon_{kl} \quad \text{em} \quad \Omega$$
 (3-6)

onde C_{ijkl} é a matriz constitutiva do material do corpo.

Para um material linearmente elástico, isotrópico e homogêneo tem-se:

$$C_{ijkl} = \frac{2Gv}{1 - 2v} \delta_{ij} \delta_{kl} + G(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
(3-7)

onde v é o coeficiente de Poisson, G é o módulo de elasticidade transversal ou de cisalhamento e δ_{ij} é o delta de Kronecker:

$$\delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$
 (3-8)

Substituindo a equação (3-7) em (3-6) e logo na equação (3-1), considerando a condição de simetria da matriz constitutiva C_{ijkl} , e a equação (3-4), obtém-se a equação de Navier:

$$Gu_{i,kk} + \frac{G}{1 - 2v}u_{k,ki} - \rho \ddot{u}_i + b_i = 0 \text{ em } \Omega,$$
 (3-9)

que pode ser expressa também como

$$c_2^2 u_{i,kk} + (c_1^2 - c_2^2) u_{k,ki} - \ddot{u}_i + \frac{b_i}{\rho} = 0 \text{ em } \Omega,$$
 (3-10)

onde c_1 é a velocidade de propagação das ondas irrotacionais e c_2 é a velocidade de propagação de cisalhamento no meio elástico, dadas por:

$$c_1 = \sqrt{\frac{2G(1-v)}{\rho(1-2v)}}$$
 , $c_2 = \sqrt{\frac{G}{\rho}}$. (3-11)

3.2 Formulação do problema

Estamos à procura de um campo de deslocamentos u_i , com seu correspondente campo de tensões σ_{ij} , que satisfaça á equação diferencial parcial de equilíbrio dinâmico

$$\sigma(x, y, z, t)_{ij,j} + b(x, y, z, t)_i - \rho \ddot{u}(x, y, z, t)_i - \mu \dot{u}(x, y, z, t) = 0$$
 em Ω (3-12)

os índices i e j podem assumir os valores 1, 2 e 3 correspondendo às coordenadas x, y e z respectivamente. O índice após a vírgula indica uma derivada na direção da coordenada correspondente. Índices repetidos indicam um somatório de três termos, no caso de problemas tridimensionais. O ponto indica a derivada respeito ao tempo. ρ é uma massa específica, b_i forças de massa e $\mu = 2\zeta \rho$ é o

coeficiente de amortecimento. O domínio Ω pode ser uma estrutura ou parte dela (nesse caso uma subestrutura ou um elemento finito).

O campo de deslocamentos deve satisfazer as condições de contorno:

$$u(x, y, z, t)_i = \overline{u}(x, y, z, t)_i \quad \text{em} \quad \Gamma_u$$
 (3-13)

onde $\overline{u}(x, y, z, t)_i$ são os deslocamentos prescritos no contorno Γ_u . O campo de tensões $\sigma(x, y, z, t)_{ij}$ também deve estar em equilíbrio com as forças $\overline{t}(x, y, z, t)_i$ prescritas no contorno Γ_{σ} . Assim,

$$\sigma(x, y, z, t)_{ij} \eta_j = \overline{t}(x, y, z, t)_i \quad \text{em} \quad \Gamma_\sigma$$
 (3-14)

onde η_j são os co-senos diretores de Γ em Ω . Todas as variáveis dependem do tempo. Os deslocamentos e velocidades iniciais devem ser conhecidos no instante inicial t=0

$$u(x, y, z, t = 0)_i = \overline{u}(x, y, z, t = 0)_i$$
 e

$$\dot{u}(x, y, z, t = 0)_i = \overline{v}(x, y, z, t = 0)_i$$
 (3-15)

onde $(x, y, z) \in \Omega$.

Uma solução que satisfaça exatamente todas as equações acima em Ω é possível em certos casos particulares.

3.3 Formulação no domínio da freqüência

Soluções do problema proposto na seção anterior podem ser obtidas investigando a resposta harmônica para ações dinâmicas, transformando o domínio do tempo para o domínio da freqüência por diferentes técnicas.

3.3.1 Técnica da transformada de Laplace

A técnica da transformada de Laplace é amplamente conhecida e utilizada na solução de diversos tipos de equações diferencias. Por exemplo: equações diferenciais parciais são transformadas em equações diferenciais ordinárias. Em nosso caso, a transformada de Laplace $\mathcal L$ será utilizado para transformar às equações (3-12), (3-13), (3-14) e (3-15) numa outra equação no domínio de freqüência.

Denotando:

$$\sigma(x, y, z, s) = \mathcal{L}\{\sigma(x, y, z, t)\}$$

$$u(x, y, z, s) = \mathcal{L}\{u(x, y, z, t)\}$$

$$b(x, y, z, s) = \mathcal{L}\{b(x, y, z, t)\}$$

$$\overline{t}(x, y, z, s) = \mathcal{L}\{\overline{t}(x, y, z, t)\}$$
(3-16)

e fazendo as substituições adequadas a equação diferencial dada por (3-12), junto às suas respectivas condições de contorno e condições iniciais (3-13), (3-14) e (3-15), se tornam

$$\sigma_{ij,j} + b_i + \rho k^2 u_i = 0$$
 em Ω , onde $k^2 = -(s^2 + 2\zeta s)$ (3-17)

$$u_i = \overline{u}_i \quad \text{em} \quad \Gamma_u \quad \text{e} \quad \sigma_{ij}\eta_j = \overline{t}_i \quad \text{em} \quad \Gamma_\sigma$$
 (3-18)

essas novas equações, após a transformação de Laplace, dependem das variáveis (x, y, z, s), onde s é a freqüência.

3.3.2

Técnica de superposição modal avançada

Esse método leva o problema para o domínio da frequência variando no tempo de acordo com a função exponencial $e^{-i\omega t}$, onde ω é a frequência circular de vibração.

Pode-se escrever para os deslocamentos:

$$u(x, y, z, t)_i = \overline{u}(x, y, z, \omega)_i e^{-i\omega t}$$
(3-19)

ou denotando simplesmente

$$u(x, y, z, t)_i = ue^{-i\omega t}$$
(3-20)

onde a dependência de (x, y, z, ω) esta implícita.

Substituindo (3-20) nas equações (3-12), (3-13) e (3-14) segue que:

$$\sigma_{ii,i} + b_i + \rho k^2 u_i = 0$$
 em Ω , onde $k^2 = (\omega^2 + 2i\zeta\omega)$ (3-21)

$$u_i = \overline{u}_i \quad \text{em} \quad \Gamma_u \quad \text{e} \quad \sigma_{ij}\eta_j = \overline{t}_i \quad \text{em} \quad \Gamma_\sigma$$
 (3-22)

As condições iniciais (3-15), a diferença da técnica da transformada de

Laplace, são utilizadas numa etapa posterior no domínio do tempo em termos de superposição modal avançada.

3.4 Formulação do método híbrido dos elementos finitos

O potencial de Hellinger-Reissner (Reissner-1950) é o ponto de partida da formulação do método híbrido dos elementos finitos. A formulação híbrida, que será feita a seguir, é valida tanto para a técnica de superposição modal avançada, como para a técnica de transfomada inversa de Laplace.

Suponha um campo de deslocamentos discreto na forma

$$u_i = u_{ir}d_r$$
 em Γ (3-23)

onde, em termos dos deslocamentos nodais, $d_r \equiv d(\omega)_r$ no contorno do elemento. As funções de interpolação u_{ir} dependem apenas da variável espacial, isto é: $(u_{ir} = u(x, y, z)_{ir})$, desde que $d_r = \overline{d}_r$ nos correspondentes pontos nodais r para deslocamentos prescritos \overline{u}_i ao longo de Γ_u .

Suponha um outro campo de deslocamentos (em Ω)

$$u_i^f = u_i^* + u_i^b (3-24)$$

de tal modo que a condição de equilíbrio da equação (3-17) ou da equação (3-21) seja satisfeita (ou seja, u_i^f é uma solução de (3-17) ou de (3-21)). Onde u_i^b é uma solução particular de (3-17) e u_i^* é a solução da parte homogênea de (3-17).

Ou seja, u_i^b é tal que o campo de tensões correspondente σ_{ij}^b satisfaz a equação

$$\sigma_{ij,j}^b + b_i + \rho k^2 u_i^b = 0 \quad \text{em} \quad \Omega$$
 (3-25)

Também, u_i^* é tal que o campo de tensões σ_{ij}^* satisfaz

$$\sigma_{ij,j}^* + \rho k^2 u_i^* = 0 \quad \text{em} \quad \Omega \tag{3-26}$$

o que caracteriza uma solução fundamental:

$$\sigma_{ij}^* = \sigma_{ijs}^* p_s^*, \quad u_i^* = u_{is}^* p_s^*, \quad \tilde{u}_i = u_{is} d_s$$
 (3-27)

em termos de parâmetros de forças nodais p_s^* dependentes da freqüência, onde o índice s refere-se a cada um dos graus de liberdade do modelo discreto.

A expressão da forma estacionária do potencial de Hellinger-Reissner, colocada na forma matricial, (Prazeres-2005), é

$$-\delta\Pi_R = \int_{t_0}^{t_1} \left[\delta \mathbf{p}^{*T} (\mathbf{F} \mathbf{p}^* - \mathbf{H} \mathbf{d} + \mathbf{b}) - \delta \mathbf{d}^T (\mathbf{H}^T \mathbf{p}^* + \mathbf{p}^b - \mathbf{p}) \right] dt = 0 \quad (3-28)$$

onde as quantidades \mathbf{p}^* e \mathbf{d} são vetores contendo os parâmetros p_s^* e d_s e são as incógnitas primárias do problema. \mathbf{F} é a matriz de flexibilidade, \mathbf{H} é a matriz de transformação cinemática, $\mathbf{b} = \mathbf{H}\mathbf{d}^b$ é um vetor de deslocamentos nodais equivalentes às forças de corpo.

A equação (3-28), para um determinado instante de tempo e valores arbitrários de $\delta \mathbf{p}^*$ e $\delta \mathbf{d}$ decompõe-se em duas novas equações:

$$\mathbf{Fp}^* = \mathbf{H}(\mathbf{d} - \mathbf{d}^b) \tag{3-29}$$

$$\mathbf{H}^T \mathbf{p}^* = \mathbf{p} - \mathbf{p}^b \tag{3-30}$$

eliminando-se \mathbf{p}^* nestas equações, tem-se, finalmente

$$\mathbf{K}(\mathbf{d} - \mathbf{d}^b) = \mathbf{p} - \mathbf{p}^b \tag{3-31}$$

onde

$$\mathbf{K} = \mathbf{H}^T \mathbf{F}^{-1} \mathbf{H} \tag{3-32}$$

é a matriz de rigidez que transforma deslocamentos nodais em forças nodais.

Uma abordagem mais simplificada foi desenvolvida por Chaves (Chaves-2003), a qual (computacionalmente) converge mais rápidamente. Sua formulação tem como resultado as equações matriciais

$$\mathbf{U}^*\mathbf{p}^* = \mathbf{d} - \mathbf{d}^b \tag{3-33}$$

$$\mathbf{H}^T \mathbf{p}^* = \mathbf{p} - \mathbf{p}^b \tag{3-34}$$

onde $\mathbf{d} \equiv d_r$ é o vetor de deslocamentos nodais, $\mathbf{d}^b \equiv d_r^b$ é o vetor nodal de deslocamentos da solução particular u_i^b e \mathbf{U}^* é a matriz de deslocamentos, onde os coeficientes U_{sr}^* que pertencem a ela são valores da solução fundamental u_i^* , obtidas nos pontos nodais r para um parâmetro de força p_s^* .

Das equações (3-33) e (3-34), eliminando-se \mathbf{p}^* obtemos a equação da matriz de rigidez

$$\mathbf{K}(\mathbf{d} - \mathbf{d}^b) = \mathbf{p} - \mathbf{p}^b \tag{3-35}$$

onde

$$\mathbf{K} = \mathbf{H}^T \mathbf{U}^{-1} \tag{3-36}$$

A matriz de rigidez (3-36) é simétrica se a função de interpolação u_{ir}^* pode representar analiticamente no contorno as expressões de u_{is}^* para deslocamentos no domínio (Dumont-2003b). No caso de elementos de treliça e viga, o contorno coincide com os pontos nodais (Prazeres-2005) e (Dumont-2006).

3.5 Técnica da transformada de Laplace

A equação diferencial parcial (3-12) foi transformada por meio da transformada de Laplace \mathcal{L} na equação diferencial ordinária (3-17), e a partir dela, aplicando elementos finitos hibridos chegamos à equação (3-31). Ou bem, à equação (3-35) (se aplicada a formulação simplificada). Que podem ser reescritas por conveniência como

$$\mathbf{K}(\omega)(\mathbf{d}(\omega) - \mathbf{d}(\omega)^b) = \mathbf{p}(\omega) - \mathbf{p}(\omega)^b$$
 (3-37)

onde a matriz de rigidez efetiva é

$$\mathbf{K}(\omega) = \mathbf{H}(\omega)^T \mathbf{F}(\omega)^{-1} \mathbf{H}(\omega) \quad \text{ou} \quad \mathbf{K}(\omega) = \mathbf{H}(\omega)^T \mathbf{U}(\omega)^{-1}$$
 (3-38)

onde os deslocamentos estao definidos no domínio da freqüência em cada um dos graus de liberdade em que foi discretizada a estrutura. Finalmente, se faz o retorno para o domínio do tempo mediante um dos métodos de transformada inversa numérica de Laplace, estudados nos capítulos anteriores.

3.6 Técnica de superposição modal avançada

Analogamente, a equação diferencial parcial (3-12) por meio de (3-19) foi tranformada na equação diferencial ordinária (3-21). A partir dela, aplicando o método de elementos finitos híbridos, foi obtida a equação (3-31). Ou bem, à equação (3-35).

A partir dessas equações, aplica-se a técnica de superposição modal avançada, que é desenvolvida a seguir

3.6.1 Expansão das matrizes na forma de séries de fregüência

As matrizes \mathbf{F} , \mathbf{H} e \mathbf{U}^* podem ser expressas como uma série de potências de freqüências (para um número n arbitrário de termos) da seguinte forma:

$$\mathbf{F} = \sum_{j=0}^{2n} (-i\omega)^j \mathbf{F}_j \quad , \quad \mathbf{H} = \sum_{j=0}^{2n} (-i\omega)^j \mathbf{H}_j \quad , \quad \mathbf{U}^* = \sum_{j=0}^{2n} (-i\omega)^j \mathbf{U}_j^* \quad (3-39)^j \mathbf{U}_j^*$$

assim como a matriz de rigidez efetiva K

$$\mathbf{K} = \sum_{j=0}^{2n} (-i\omega)^j \mathbf{K}_j = \mathbf{K}_0 - \sum_{j=1}^n (i\omega^{2j-1} \mathbf{C}_j + \omega^{2j} \mathbf{M}_j)$$
(3-40)

onde \mathbf{K}_0 , \mathbf{C} e \mathbf{M} vêm da expansão de \mathbf{K} como série de potências (de freqüências). Essas matrizes representam a: matriz de rigidez estática; matrizes de amortecimento e matrizes de massa, respectivamente.

Para poder expresar \mathbf{K} como uma série de freqüências, é necessário inverter a matriz \mathbf{F} , que também é dada por uma expansão em séries de freqüências, segundo a equação (3-39), (Dumont-2006).

Para um vetor de forças $\mathbf{p}(t)$ dependente do tempo agindo num corpo elástico, a equação (3-31) pode ser expressa (Dumont-2003b) como

$$\left[\mathbf{K}_0 - \sum_{j=1}^n (i\omega^{2j-1}\mathbf{C}_j + \omega^{2j}\mathbf{M}_j)\right] (\mathbf{d} - \mathbf{d}^b) = \mathbf{p}(t) - \mathbf{p}(t)^b$$
 (3-41)

onde o vetor dos deslocamentos **d** são as incógnitas a serem determinadas para forças, velocidade e deslocamentos iniciais.

3.6.2 O problema de autovalor não-linear

O problema de autovalor não-linear associado à equação (3-41) tem a forma

$$\mathbf{K}_0 \mathbf{\Phi} - \sum_{j=1}^n (i \mathbf{C}_j \mathbf{\Omega}^{2j-1} + \mathbf{M}_j \mathbf{\Phi} \mathbf{\Omega}^{2j}) = 0$$
 (3-42)

onde Ω é uma matriz diagonal cujos elementos são autovalores ω que representam as freqüências e Φ é uma matriz cujas colunas são os autovetores que representam os modos de vibração. Esse problema não-linear de autovalor tem difícil tratamento, visto que a convergência numérica não pode ser facilmente assegurada e que erros de arredondamento ocorrem inevitavelmente.

Uma solução do problema de autovalor foi dada por (Dumont-2007), que consiste numa generalização da solução linear. Deve-se comentar que a solução do problema pode incluir ou não o amortecimento. A diferença, entre ter ou não

amortecimento, está nos resultados do cálculo. Os autovalores e autovetores são todos reais para o caso sem amortecimento, e complexos quando considerado o amortecimento.

Uma solução adequada Φ deve satisfazer as seguintes condições de ortogonalidade, (Dumont-2007):

$$\sum_{j=1}^{n} \left[\sum_{k=2}^{2j} \mathbf{\Omega}^{k-2} \mathbf{\Phi}^{T} i \mathbf{C}_{j} \mathbf{\Phi} \omega^{2j-k} + \sum_{k=1}^{2j} \mathbf{\Omega}^{k-1} \mathbf{\Phi}^{T} \mathbf{M}_{j} \mathbf{\Phi} \mathbf{\Omega}^{2j-k} \right] = \mathbf{I}$$
 (3-43)

$$\mathbf{\Phi}^T \mathbf{K}_0 \mathbf{\Phi} + \sum_{j=1}^n \left[\sum_{k=1}^{2j-2} \mathbf{\Omega}^k \mathbf{\Phi}^T i \mathbf{C}_j \mathbf{\Phi} \omega^{2j-k-1} + \sum_{k=1}^{2j-1} \mathbf{\Omega}^k \mathbf{\Phi}^T \mathbf{M}_j \mathbf{\Phi} \mathbf{\Omega}^{2j-k} \right] = \mathbf{\Omega} \quad (3-44)$$

3.6.3 Processo de Superposição Modal

Uma forma alternativa de escrever a equação (3-41) que corresponde a um sistema acoplado de equações diferenciais de alta ordem de tempo que faz uso das matrizes obtidas na formulação dependente da freqüência (Dumont-de Oliveira-2001) se pode expressar na forma

$$\left[\mathbf{K}_{0} - \sum_{j=1}^{n} (-1)^{j} \left(\mathbf{C}_{j} \frac{\partial^{2j-1}}{\partial t^{2j-1}} + \mathbf{M}_{j} \frac{\partial^{2j}}{\partial t^{2j}}\right)\right] (\mathbf{d} - \mathbf{d}^{b}) = \mathbf{p}(t) - \mathbf{p}(t)^{b} \qquad (3-45)$$

onde pode-se introduzir um conjunto de deslocamentos auxiliares $\mathbf{d}_{j}(t)$ tal que

$$\mathbf{d}_{j}(t) = (i)^{j} \frac{\partial^{j} \mathbf{d}(t)}{\partial t^{j}}$$
 para $j = 1 \dots 2n$ (3-46)

Portanto, de acordo com a equação (3-46) a equação (3-45) pode ser escrita como um sistema aumentado (Dumont-2007)

$$\begin{bmatrix} \mathbf{K}_{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{M}_{1} & i\mathbf{C}_{2} & \mathbf{M}_{2} & \cdots & \mathbf{M}_{n} \\ 0 & i\mathbf{C}_{2} & \mathbf{M}_{2} & i\mathbf{C}_{3} & \cdots & 0 \\ 0 & \mathbf{M}_{2} & i\mathbf{C}_{3} & \vdots & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \mathbf{M}_{n} & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{cases} \mathbf{d} - \mathbf{d}^{b} \\ \mathbf{d}_{1} - \mathbf{d}^{b}_{1} \\ \mathbf{d}_{2} - \mathbf{d}^{b}_{2} \\ \mathbf{d}_{3} - \mathbf{d}^{b}_{3} \\ \vdots \\ \mathbf{d}_{2n} - \mathbf{d}^{b}_{2n} \end{bmatrix}$$

$$- \omega \begin{bmatrix} i\mathbf{C}_{1} & \mathbf{M}_{1} & i\mathbf{C}_{2} & \mathbf{M}_{2} & \cdots & \mathbf{M}_{n} \\ \mathbf{M}_{1} & i\mathbf{C}_{2} & \mathbf{M}_{2} & i\mathbf{C}_{3} & \cdots & 0 \\ i\mathbf{C}_{2} & \mathbf{M}_{2} & i\mathbf{C}_{3} & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{M}_{n} & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \dot{\mathbf{d}} - \dot{\mathbf{d}}^{b} \\ \dot{\mathbf{d}}_{1} - \dot{\mathbf{d}}^{b}_{1} \\ \dot{\mathbf{d}}_{2} - \dot{\mathbf{d}}^{b}_{2} \\ \dot{\mathbf{d}}_{3} - \dot{\mathbf{d}}^{b}_{3} \\ \vdots \\ \dot{\mathbf{d}}_{2n} - \dot{\mathbf{d}}^{b}_{2n} \end{bmatrix} = \begin{bmatrix} \mathbf{p} - \mathbf{p}^{b} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$(3-47)$$

Utilizando conceitos de superposição modal, pode-se aproximar os deslocamentos dependentes do tempo pela soma finita de contribuições dadas pelo produto entre os vetores normalizados Φ com os vetores de amplitudes $\eta(t)$, os quais serão as novas incógnitas do problema:

$$\mathbf{d} = \mathbf{\Phi}\eta \tag{3-48}$$

Aplicando essa expressão à equação (3-47), para o caso de estruturas com amortecimento, segue que

$$\Omega(\eta - \eta^b) - i(\dot{\eta} - \dot{\eta}^b) = \Phi^T(p - p^b)$$
(3-49)

equação que corresponde a um sistema desacloplado de equações de primeira ordem, que pode ser resolvida pelos métodos tradicionais de resolução de equações diferencias. Os deslocamentos assumem a forma

$$\mathbf{d} = \mathbf{\Phi}\eta + \overline{\mathbf{\Phi}}\overline{\eta} \tag{3-50}$$

onde **d** é o vetor de deslocamentos nodais, Φ é a matriz dos autovetores e $\overline{\Phi}$ a matriz conjugada complexa de Φ . η é a solução da equação diferencial e representa o vetor temporal de amplitudes e $\overline{\eta}$ é seu conjugado complexo.

No caso de um sistema sem amortecimento, o sistema desacoplado de equações de segunda ordem é

$$\Omega^{2}(\eta - \eta^{b}) + (\ddot{\eta} - \ddot{\eta}^{b}) = \Phi^{T}(p - p^{b})$$
(3-51)